区块链K数 币圈看k线

泰达币 1778 0

今天给各位分享区块链K数的知识,其中也会对币圈看k线进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

区块链 --- 共识算法

PoW算法是一种防止分布式服务资源被滥用、拒绝服务攻击的机制。它要求节点进行适量消耗时间和资源的复杂运算,并且其运算结果能被其他节点快速验算,以耗用时间、能源做担保,以确保服务与资源被真正的需求所使用。

PoW算法中最基本的技术原理是使用哈希算法。假设求哈希值Hash(r),若原始数据为r(raw),则运算结果为R(Result)。

R = Hash(r)

哈希函数Hash()的特性是,对于任意输入值r,得出结果R,并且无法从R反推回r。当输入的原始数据r变动1比特时,其结果R值完全改变。在比特币的PoW算法中,引入算法难度d和随机值n,得到以下公式:

Rd = Hash(r+n)

该公式要求在填入随机值n的情况下,计算结果Rd的前d字节必须为0。由于哈希函数结果的未知性,每个矿工都要做大量运算之后,才能得出正确结果,而算出结果广播给全网之后,其他节点只需要进行一次哈希运算即可校验。PoW算法就是采用这种方式让计算消耗资源,而校验仅需一次。

 

PoS算法要求节点验证者必须质押一定的资金才有挖矿打包资格,并且区域链系统在选定打包节点时使用随机的方式,当节点质押的资金越多时,其被选定打包区块的概率越大。

POS模式下,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。这个时候,如果你验证了一个POS区块,你的币龄就会被清空为0,同时从区块中获得相对应的数字货币利息。

节点通过PoS算法出块的过程如下:普通的节点要成为出块节点,首先要进行资产的质押,当轮到自己出块时,打包区块,然后向全网广播,其他验证节点将会校验区块的合法性。

 

DPoS算法和PoS算法相似,也采用股份和权益质押。

但不同的是,DPoS算法采用委托质押的方式,类似于用全民选举代表的方式选出N个超级节点记账出块。

选民把自己的选票投给某个节点,如果某个节点当选记账节点,那么该记账节点往往在获取出块奖励后,可以采用任意方式来回报自己的选民。

这N个记账节点将轮流出块,并且节点之间相互监督,如果其作恶,那么会被扣除质押金。

通过信任少量的诚信节点,可以去除区块签名过程中不必要的步骤,提高了交易的速度。

 

拜占庭问题:

拜占庭是古代东罗马帝国的首都,为了防御在每块封地都驻扎一支由单个将军带领的军队,将军之间只能靠信差传递消息。在战争时,所有将军必须达成共识,决定是否共同开战。

但是,在军队内可能有叛徒,这些人将影响将军们达成共识。拜占庭将军问题是指在已知有将军是叛徒的情况下,剩余的将军如何达成一致决策的问题。

BFT:

BFT即拜占庭容错,拜占庭容错技术是一类分布式计算领域的容错技术。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或中断以及遭到恶意攻击等原因,计算机和网络可能出现不可预料的行为。拜占庭容错技术被设计用来处理这些异常行为,并满足所要解决的问题的规范要求。

拜占庭容错系统 :

发生故障的节点被称为 拜占庭节点 ,而正常的节点即为 非拜占庭节点 。

假设分布式系统拥有n台节点,并假设整个系统拜占庭节点不超过m台(n ≥ 3m + 1),拜占庭容错系统需要满足如下两个条件:

另外,拜占庭容错系统需要达成如下两个指标:

PBFT即实用拜占庭容错算法,解决了原始拜占庭容错算法效率不高的问题,算法的时间复杂度是O(n^2),使得在实际系统应用中可以解决拜占庭容错问题

 

PBFT是一种状态机副本复制算法,所有的副本在一个视图(view)轮换的过程中操作,主节点通过视图编号以及节点数集合来确定,即:主节点 p = v mod |R|。v:视图编号,|R|节点个数,p:主节点编号。

PBFT算法的共识过程如下:客户端(Client)发起消息请求(request),并广播转发至每一个副本节点(Replica),由其中一个主节点(Leader)发起提案消息pre-prepare,并广播。其他节点获取原始消息,在校验完成后发送prepare消息。每个节点收到2f+1个prepare消息,即认为已经准备完毕,并发送commit消息。当节点收到2f+1个commit消息,客户端收到f+1个相同的reply消息时,说明客户端发起的请求已经达成全网共识。

具体流程如下 :

客户端c向主节点p发送REQUEST, o, t, c请求。o: 请求的具体操作,t: 请求时客户端追加的时间戳,c:客户端标识。REQUEST: 包含消息内容m,以及消息摘要d(m)。客户端对请求进行签名。

主节点收到客户端的请求,需要进行以下交验:

a. 客户端请求消息签名是否正确。

非法请求丢弃。正确请求,分配一个编号n,编号n主要用于对客户端的请求进行排序。然后广播一条PRE-PREPARE, v, n, d, m消息给其他副本节点。v:视图编号,d客户端消息摘要,m消息内容。PRE-PREPARE, v, n, d进行主节点签名。n是要在某一个范围区间内的[h, H],具体原因参见 垃圾回收 章节。

副本节点i收到主节点的PRE-PREPARE消息,需要进行以下交验:

a. 主节点PRE-PREPARE消息签名是否正确。

b. 当前副本节点是否已经收到了一条在同一v下并且编号也是n,但是签名不同的PRE-PREPARE信息。

c. d与m的摘要是否一致。

d. n是否在区间[h, H]内。

非法请求丢弃。正确请求,副本节点i向其他节点包括主节点发送一条PREPARE, v, n, d, i消息, v, n, d, m与上述PRE-PREPARE消息内容相同,i是当前副本节点编号。PREPARE, v, n, d, i进行副本节点i的签名。记录PRE-PREPARE和PREPARE消息到log中,用于View Change过程中恢复未完成的请求操作。

主节点和副本节点收到PREPARE消息,需要进行以下交验:

a. 副本节点PREPARE消息签名是否正确。

b. 当前副本节点是否已经收到了同一视图v下的n。

c. n是否在区间[h, H]内。

d. d是否和当前已收到PRE-PPREPARE中的d相同

非法请求丢弃。如果副本节点i收到了2f+1个验证通过的PREPARE消息,则向其他节点包括主节点发送一条COMMIT, v, n, d, i消息,v, n, d, i与上述PREPARE消息内容相同。COMMIT, v, n, d, i进行副本节点i的签名。记录COMMIT消息到日志中,用于View Change过程中恢复未完成的请求操作。记录其他副本节点发送的PREPARE消息到log中。

主节点和副本节点收到COMMIT消息,需要进行以下交验:

a. 副本节点COMMIT消息签名是否正确。

b. 当前副本节点是否已经收到了同一视图v下的n。

c. d与m的摘要是否一致。

d. n是否在区间[h, H]内。

非法请求丢弃。如果副本节点i收到了2f+1个验证通过的COMMIT消息,说明当前网络中的大部分节点已经达成共识,运行客户端的请求操作o,并返回REPLY, v, t, c, i, r给客户端,r:是请求操作结果,客户端如果收到f+1个相同的REPLY消息,说明客户端发起的请求已经达成全网共识,否则客户端需要判断是否重新发送请求给主节点。记录其他副本节点发送的COMMIT消息到log中。

 

如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻的序号不连续。备份节点应当有职责来主动检查这些序号的合法性。

如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线,发起View Change协议。

View Change协议 :

副本节点向其他节点广播VIEW-CHANGE, v+1, n, C , P , i消息。n是最新的stable checkpoint的编号, C 是 2f+1验证过的CheckPoint消息集合, P 是当前副本节点未完成的请求的PRE-PREPARE和PREPARE消息集合。

当主节点p = v + 1 mod |R|收到 2f 个有效的VIEW-CHANGE消息后,向其他节点广播NEW-VIEW, v+1, V , O 消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主节点重新发起的未经完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的选取规则:

副本节点收到主节点的NEW-VIEW消息,验证有效性,有效的话,进入v+1状态,并且开始 O 中的PRE-PREPARE消息处理流程。

 

在上述算法流程中,为了确保在View Change的过程中,能够恢复先前的请求,每一个副本节点都记录一些消息到本地的log中,当执行请求后副本节点需要把之前该请求的记录消息清除掉。

最简单的做法是在Reply消息后,再执行一次当前状态的共识同步,这样做的成本比较高,因此可以在执行完多条请求K(例如:100条)后执行一次状态同步。这个状态同步消息就是CheckPoint消息。

副本节点i发送CheckPoint, n, d, i给其他节点,n是当前节点所保留的最后一个视图请求编号,d是对当前状态的一个摘要,该CheckPoint消息记录到log中。如果副本节点i收到了2f+1个验证过的CheckPoint消息,则清除先前日志中的消息,并以n作为当前一个stable checkpoint。

这是理想情况,实际上当副本节点i向其他节点发出CheckPoint消息后,其他节点还没有完成K条请求,所以不会立即对i的请求作出响应,它还会按照自己的节奏,向前行进,但此时发出的CheckPoint并未形成stable。

为了防止i的处理请求过快,设置一个上文提到的 高低水位区间[h, H] 来解决这个问题。低水位h等于上一个stable checkpoint的编号,高水位H = h + L,其中L是我们指定的数值,等于checkpoint周期处理请求数K的整数倍,可以设置为L = 2K。当副本节点i处理请求超过高水位H时,此时就会停止脚步,等待stable checkpoint发生变化,再继续前进。

 

在区块链场景中,一般适合于对强一致性有要求的私有链和联盟链场景。例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。

 

 

Raft基于领导者驱动的共识模型,其中将选举一位杰出的领导者(Leader),而该Leader将完全负责管理集群,Leader负责管理Raft集群的所有节点之间的复制日志。

 

下图中,将在启动过程中选择集群的Leader(S1),并为来自客户端的所有命令/请求提供服务。 Raft集群中的所有节点都维护一个分布式日志(复制日志)以存储和提交由客户端发出的命令(日志条目)。 Leader接受来自客户端的日志条目,并在Raft集群中的所有关注者(S2,S3,S4,S5)之间复制它们。

在Raft集群中,需要满足最少数量的节点才能提供预期的级别共识保证, 这也称为法定人数。 在Raft集群中执行操作所需的最少投票数为 (N / 2 +1) ,其中N是组中成员总数,即 投票至少超过一半 ,这也就是为什么集群节点通常为奇数的原因。 因此,在上面的示例中,我们至少需要3个节点才能具有共识保证。

如果法定仲裁节点由于任何原因不可用,也就是投票没有超过半数,则此次协商没有达成一致,并且无法提交新日志。

 

数据存储:Tidb/TiKV

日志:阿里巴巴的 DLedger

服务发现:Consul etcd

集群调度:HashiCorp Nomad

 

只能容纳故障节点(CFT),不容纳作恶节点

顺序投票,只能串行apply,因此高并发场景下性能差

 

Raft通过解决围绕Leader选举的三个主要子问题,管理分布式日志和算法的安全性功能来解决分布式共识问题。

当我们启动一个新的Raft集群或某个领导者不可用时,将通过集群中所有成员节点之间协商来选举一个新的领导者。 因此,在给定的实例中,Raft集群的节点可以处于以下任何状态: 追随者(Follower),候选人(Candidate)或领导者(Leader)。

系统刚开始启动的时候,所有节点都是follower,在一段时间内如果它们没有收到Leader的心跳信号,follower就会转化为Candidate;

如果某个Candidate节点收到大多数节点的票,则这个Candidate就可以转化为Leader,其余的Candidate节点都会回到Follower状态;

一旦一个Leader发现系统中存在一个Leader节点比自己拥有更高的任期(Term),它就会转换为Follower。

Raft使用基于心跳的RPC机制来检测何时开始新的选举。 在正常期间, Leader 会定期向所有可用的 Follower 发送心跳消息(实际中可能把日志和心跳一起发过去)。 因此,其他节点以 Follower 状态启动,只要它从当前 Leader 那里收到周期性的心跳,就一直保持在 Follower 状态。

当 Follower 达到其超时时间时,它将通过以下方式启动选举程序:

根据 Candidate 从集群中其他节点收到的响应,可以得出选举的三个结果。

共识算法的实现一般是基于复制状态机(Replicated state machines),何为 复制状态机 :

简单来说: 相同的初识状态 + 相同的输入 = 相同的结束状态 。不同节点要以相同且确定性的函数来处理输入,而不要引入一下不确定的值,比如本地时间等。使用replicated log是一个很不错的注意,log具有持久化、保序的特点,是大多数分布式系统的基石。

有了Leader之后,客户端所有并发的请求可以在Leader这边形成一个有序的日志(状态)序列,以此来表示这些请求的先后处理顺序。Leader然后将自己的日志序列发送Follower,保持整个系统的全局一致性。注意并不是强一致性,而是 最终一致性 。

日志由有序编号(log index)的日志条目组成。每个日志条目包含它被创建时的任期号(term),和日志中包含的数据组成,日志包含的数据可以为任何类型,从简单类型到区块链的区块。每个日志条目可以用[ term, index, data]序列对表示,其中term表示任期, index表示索引号,data表示日志数据。

Leader 尝试在集群中的大多数节点上执行复制命令。 如果复制成功,则将命令提交给集群,并将响应发送回客户端。类似两阶段提交(2PC),不过与2PC的区别在于,leader只需要超过一半节点同意(处于工作状态)即可。

leader 、 follower 都可能crash,那么 follower 维护的日志与 leader 相比可能出现以下情况

当出现了leader与follower不一致的情况,leader强制follower复制自己的log, Leader会从后往前试 ,每次AppendEntries失败后尝试前一个日志条目(递减nextIndex值), 直到成功找到每个Follower的日志一致位置点(基于上述的两条保证),然后向后逐条覆盖Followers在该位置之后的条目 。所以丢失的或者多出来的条目可能会持续多个任期。

 

要求候选人的日志至少与其他节点一样最新。如果不是,则跟随者节点将不投票给候选者。

意味着每个提交的条目都必须存在于这些服务器中的至少一个中。如果候选人的日志至少与该多数日志中的其他日志一样最新,则它将保存所有已提交的条目,避免了日志回滚事件的发生。

即任一任期内最多一个leader被选出。这一点非常重要,在一个复制集中任何时刻只能有一个leader。系统中同时有多余一个leader,被称之为脑裂(brain split),这是非常严重的问题,会导致数据的覆盖丢失。在raft中,两点保证了这个属性:

因此, 某一任期内一定只有一个leader 。

 

当集群中节点的状态发生变化(集群配置发生变化)时,系统容易受到系统故障。 因此,为防止这种情况,Raft使用了一种称为两阶段的方法来更改集群成员身份。 因此,在这种方法中,集群在实现新的成员身份配置之前首先更改为中间状态(称为联合共识)。 联合共识使系统即使在配置之间进行转换时也可用于响应客户端请求,它的主要目的是提升分布式系统的可用性。

区块链之加密原理总结(一)

    先放一张以太坊的架构图:

    在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

                秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

        如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

        2、无法解决消息篡改。

    如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

        1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

        2、同样存在无法确定消息来源的问题,和消息篡改的问题。

        如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

        1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

        2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

        如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

        1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。

        2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

        经两次非对称加密,性能问题比较严重。

        基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

        当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

        在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

        无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

        在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

        为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

       在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

        为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

        在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

        以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

        那么如何生成随机的共享秘钥进行加密呢?

        对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

        对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

        对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。

        那么究竟应该采用何种加密呢?

        主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

        密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

        在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

        秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

        消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

        批量加密算法:比如AES, 主要用于加密信息流。

        伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

        在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

        握手/网络协商阶段:

        在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

        身份认证阶段:

        身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

        消息加密阶段:

        消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

        消息身份认证阶段/防篡改阶段:

        主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

         ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。

         ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段 。

         ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。

         ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。

         ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

        ECC 是 Elliptic Curve Cryptography的简称。那么什么是椭圆加密曲线呢?Wolfram MathWorld 给出了很标准的定义: 一条椭圆曲线就是一组被   定义的且满足  的点集。  

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

        所有的非对称加密的基本原理基本都是基于一个公式 K = k*G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式  不可进行逆运算( 也就是说G/K是无法计算的 )。

        ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

         我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k*G计算出我们的公钥K。并且保证公钥K也要在曲线上。

        那么k*G怎么计算呢?如何计算k*G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

        首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:

        在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2*2 = 2+2,3*5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

        曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

        现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

         ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

         那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

        同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

        P+R+Q = 0, 故P+R = -Q , 如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

        从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。

        也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0

        于是乎得到 2*P = -Q (是不是与我们非对称算法的公式 K = k*G 越来越近了)。

        于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

        假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

        那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。

        选一个随机数 k, 那么k * P等于多少呢?

        我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111

        由于2*P = -Q 所以 这样就计算出了k*P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

        至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

        我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

        ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

        在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。

         签名过程:

        生成随机数R, 计算出RG.

        根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.

        将消息M,RG,S发送给接收方。

         签名验证过程:

        接收到消息M, RG,S

        根据消息计算出HASH值H

        根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。

         公式推论:

        HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG

        在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。

        这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考  Alice And Bob  的例子。

        Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。

         生成秘钥阶段:

        Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。

        Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。

         计算ECDH阶段:

        Alice 利用计算公式 Q = ka * KB  计算出一个秘钥Q。

        Bob 利用计算公式 Q' = kb * KA 计算出一个秘钥Q'。

         共享秘钥验证:

        Q = ka  KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'

        故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

        在以太坊中,采用的ECIEC的加密套件中的其他内容:

        1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。

        2、签名算法采用的是 ECDSA

        3、认证方式采用的是  H-MAC

        4、ECC的参数体系采用了secp256k1,  其他参数体系 参考这里

        H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:

在 以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

        其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

        其UDP的整个的加密,认证,签名模型如下:

区块链共识机制之一:POW工作量证明机制

区块链可以理解为一个不可篡改的公共账本,所有参与者都能验证交易并进行记账,即为分布式账本。那到底由谁来记账?又如何保证账本的一致性、准确性呢?也就是区块链的共识机制是如何的?

区块链的共识机制就是解决由谁来记账(构造区块),以及如何维护区块链的一致性问题。目前区块链项目采用的共识机制有多种,如:POW工作量证明机制,POS权益证明机制,DPOS股份授权证明机制等等。本文说明POW工作量证明机制。

区块链的第一个成功应用比特币系统采用的POW工作量证明机制。即以比特币系统为例说明POW机制,首先比特币系统有一套激励机制让所有参与者竞争记账的权利,即谁拥有记账权谁将获取构造新区块的比特币奖励(目前奖励为12.5比特币),同时获取新区块内所有交易的手续费作为奖励。

参与者如何竞争记账权利呢?参与者通过自己的算力计算一道数学难题,谁先计算的结果,谁就拥有了记账的权利,也就可获得构造新区块的奖励。这道数学难题就是寻找一个随机数Nonce,使得对区块头的哈希计算的结果小于目标值,Nonce本身是区块头中的一个字段,所以通过不断的尝试Nonce的值,以满足区块头的哈希计算结果小于目标值。通过动态调整目标值,即可调整计算的Nonce值的难度。

关于哈希计算Nonce的过程通常类比为掷筛子游戏,基于参与游戏的筛子的个数通过调整掷得筛子的点数可调整游戏的难度。例如:100个人参与掷筛子,总共有100个筛子,要求掷得点数为100为赢,则100个人谁先掷得点数100即为胜利者,即拥有了记账权。如果发现大家掷出100点的时间太快,则可增加难度,要求掷得点数为80为赢。如果又有100个人参与游戏,则游戏中增加了筛子数,如:筛子数增加为200个,同样通过设置掷得点数来调整游戏的难度。

筛子类似于比特币网络的算力,掷得点数类似于比特币网络可动态调整的目标值。

区块链以最长的链条视为正确的链条,如果存在同时出现两个区块,会暂时并行记录两个区块,后续再生成的区块基于其中的某一个区块,将会形成的最长的链条作为一致性的链条,另外一个区块将会被丢弃,比特币是基于6个区块的确认,所以被丢弃的区块将不会获得比特币系统的奖励,也就是白白将竞争记账权的算力(电费)浪费了。基于工作量的激励,参与者必然尽最大能力构造正确的区块,也就是满足区块链的一致性。即全网的所有用户可以达成唯一的一致性的公共账本。

目前比特币系统全网算力已达到惊人的24.75EH/s,其中1E=1000P,1P=1000T,1T=1000G,1G=1000M,1M=1000K,1K=1000,H/s为每秒一次哈希计算(哈希碰撞),也就是每秒进行24.75E次哈希计算,且仍有持续的算力加入比特币系统。比特币记账权的竞争,提供算力的硬件从CPU,GPU,专业矿机,矿池。目前单机版的专业矿机已无法竞争到记账权,必须由多台矿机组合为矿池才能竞争到记账权。

区块链核心技术-P2P网络

点对点网络是区块链中核心的技术之一区块链K数,主要关注的方面是为区块链提供一个稳定的网络结构,用于广播未被打包的交易(交易池中的交易)以及共识过的区块,部分共识算法也需要点对点的网络支撑(如PBFT),另外一个辅助功能,如以太坊的消息网络,也需要点对点网络的支持。

P2P网络分为结构化和非结构化网络两类。结构化网络采用类似DHT算法来构建网络结构;非结构化网络是一种扁平的网络,每个节点都有一些邻居节点的地址。

点对点网络的主要职责有维护网络结构和发送信息这两个方面。网络结构要关注的是新节点的加入和网络更新这两个方面,而发送信息包括广播和单播两个方面

如何建立并维护点对点的整个网络区块链K数?节点如何加入、退出?

网络结构的建立有两个核心的参数,一个是每个节点向外连接的节点数,第二个是最大转发数。

新节点对于整个网络一无所知,要么通过一个中心的服务获取网络中的一些节点去连接,要么去连接网络中的“种子”节点。

网络更新处理当有新节点加入或者节点退出,甚至原来一些节点网络不好,无法连接,过一段时间又活区块链K数了,等等这些情况。一般通过节点已有的连接来广播这些路由表的变化。需要注意的是,因为点对点网络的特殊性,每个节点的路由表是不一样的(也叫partial view)

广播一般采用泛洪协议,即收到转发方式,使的消息在网络中扩散,一般要采用一些限制条件,比如一条消息要设置最大的转发数,避免网络的过渡负载。

单播需要结构化网络结构支持,一般是DHT,类似于DNS解析的方式,逐跳寻找目标节点地址,之后进行传输,并且更新本地路由表。

要想快速检索信息,有两种数据结构可以使用,一种是树类型,如AVL树、红黑树、B树等;另外一类是hash表。

哈希表的效率比树更高,但是需要占用更多的内存。

信息的表示采用键值对的方式,即一个键对应一个值,我们要查找的是key,值是附着的信息。

哈希表要解决的问题是如何均匀地为每一个key分配一个存储位置。

这里面有两个重点区块链K数:1.是为key分配一个存储地点,这个分配算法是固定的,保证存储的时候和查找的时候使用同一个算法,不然存进去之后会找不到;2.是均匀地分配,不能有点地方存放数据多,有点放存放数据少。

一般语言里面的hashtable、map等结构使用这个技术来实现,哈希函数可以直接使用取模函数,key%n,这种方式,n代表有多少个地方,key是整数,如果key是其他类型,需要先进行一次哈希,将key转为整数。这种方式可以解决上面的两个需求,但是当n不够大的时候(小于要存储的数据),会产生冲突,一个地方一定会有两个key要存储,这时候,需要在这个地方放一个链表,将分配到同一地点、不同key,顺序摆放。当一个地点放的key太多后,链表的查找速度太慢,要转化为树类型结构(红黑树或者AVL树)。

上面说过,哈希表效率很高,但是占用内容,使用多台机器就可以解决这个限制。在分布式环境中,可以将上述的地点理解为计算机(后面成为节点),即如何将一个key映射到一个节点上,每个节点有一个节点ID,即key-node id的映射,这个映射算法也要固定。

这个算法还有一个非常重要的要求,即scalebility,当新节点加入和退出时候,需要迁移的key要尽量少。

这个映射算法有两种典型结构,一个是环形,一个是树形;环形的叫一致性哈希算法,树形的典型叫kademlia算法。

选点算法就是解决key-node id的映射算法,形象的来说就是为一个key选择它生命中的她(节点)。

假设我们使用32哈希,那么总共能容纳的key的数据量是2**32,称之为hash空间,把节点的ID映射成整数,key也映射成整数。把key哈希和节点哈希值接的差值的叫做距离(负数的话要取模,不用绝对值),比如一个key的哈希是100(整数表示),一个节点的哈希是105,则这两个的距离是105-100=5。当然使用其他距离表示也可以,比如反过来减,但是算法要固定。我们把key映射(放到)距离他最近的节点上。距离取模的话,看起来就是把节点和key放到一个环上,key归属到从顺时针角度离它最近的节点上。

kademlia算法的距离采用的是key哈希与节点哈希异或计算之后的数值来表示(整数),从左往右,拥有越多的“相同前缀”,则距离越近,越在左边位置不一样,距离越远。

树结构的体现是,将节点和key看成树的节点,这个算法支持的位数是160bit,即20个8字节,树的高度为160,每个边表示一位。

选点的算法和一致性哈希相同,从所有节点中,选择一个距离key距离最小的节点作为这个key的归宿。

由于是在分布式环境中,为了保证高可用,我们假设没有一个中心的路由表,没有这个可以看到全貌的路由表,带来了一些挑战,比如如何发现节点、查找节点?

在P2P网络中,常用的方法是每个节点维护一个部分路由表,即只包含部分节点的路由信息。在泛洪算法中,这些节点上随机的;在DHT算法中,这个路由表是有结构的,维护的节点也是有选择性的。那么如何合理的选择需要维护路由信息的节点呢?

一个朴素的做法是,每一个节点保存比他大的节点的信息,这样可以组成一个环,但是这样做的话,有一个大问题和一个小问题。大问题是,每个节点知道的信息太少(只有下一个节点的哈希和地址),当给出一个key时,它不知道网络中还有没有比它距离这个key距离还短的节点,所以它首先判断key是否属于自己和下一个节点,如果是,那么这个key就属于下一个节点,如果不是就调用下一个节点同样的方法,这个复杂度是N(节点数)。一个优化的方法是,每个节点i维护的其他节点有:i+2 1, i+2 2,....i+2**31,通过观察这个数据,发现由近到远,节点越来越稀疏。这样可以把复杂度降低到lgN

每个节点保存的其他节点的信息,包括,从左到右,每一位上与本节点不同的节点,最多选择k个(算法的超参数)。比如在节点00110上(为演示起见,选择5位),在要保存的节点路由信息是:

1****: xxx,....,xxx(k个)

01 : xxx,....,xxx(k个)

000 : xxx,....,xxx(k个)

0010 : xxx,....,xxx(k个)

00111: xxx,....,xxx(k个)

以上为一行称为k-bucket。形象的来看,也是距离自己越近,节点越密集,越远,节点越稀疏。这个路由查找、节点查找的算法也是lgN复杂度。

NZADD的K区块链支付有什么特点?

你好,K区块链的特点如下:

1、轻松兑换。可以兑换其他的数字货币,实时结算

2、便捷出金。与第三方支付完全相同的出金功能,快速提取数字货币

3、收费低廉。采取人性化的收费体系,相对于传统的出入金收费,费用低可至千分之三

4、对接简便。开发专用的API接口,可将出入数字货币接口嵌入原先的支付场景,与目前支付宝支付功能完全一致

希望我的回答对你有帮助,望采纳,谢谢!

关于区块链K数和币圈看k线的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签: #区块链K数

  • 评论列表

留言评论